M6官网注册·先进封装中铜-铜低温键合技术研究进展

2024-05-16 06:46:01 来源:m6在线登陆 作者:M6米乐手机登录APP入口 1

  低温键合技术进行了综述,首先从工艺流程、 连接机理、性能表征等方面较系统地总结了热压工艺、混合键合工艺实现低温键合的研究进展与存在问题, 进一步地阐述了新型纳米材料烧结工艺在实现低温连接、降低工艺要求方面的优越性,概述了纳米线、纳米多孔骨 架、纳米颗粒初步实现可图形化的结果表明,基于纳米材料烧结连接的基本原理,继续 开发出宽工艺冗余、窄节距图形化、优良互连性能的

  摩尔定律指出,集成电路上可容纳的晶体管数 目及性能约每隔18 ~ 24个月便会提升一倍.随 着大数据、5G、人工智能、移动互联网的迅猛发展, 尤其是工艺节点到7 nm之后,物理效应、成本的限 制使得依靠光刻技术驱动的摩尔定律明显放缓.在“后摩尔时代”,不再一味地追求更小的光刻工艺 节点,而是依靠先进封装互连技术的创新来满足系 统微型化、多功能化的需求,这将是集成电路制造 行业发展的重要方向之一.

  为了满足高性能芯片的应用需求,未来先进封 装互连技术将不断向高密度、高可靠的方向发展.高密度即指焊点节距将不断减小至10 μm以下,焊 点密度超过10 000个/mm2;高可靠主要指焊点在 电流密度不小于106 A/cm2、服役温度不低于100 ℃等工况下服役时具有良好的稳定性能,并伴随应用 领域对电子器件要求越高则上述服役参数将不断 提升.目前,主流应用的先进封装互连技术为Sn基 钎料软钎焊工艺,主要包括回流焊和波峰焊工艺, 其具有连接温度低(250 ~ 300 ℃)、成本低等优势.对于回流焊工艺,回流过程中可发生自对中效应和 塌陷效应,降低了对设备对中精度和基板平整度 的要求.然而,软钎焊工艺也存在诸多局限性,比如 回流过程中易发生外溢效应,无法实现窄节距互 连;其接头载流能力弱,易发生电迁移失效;界面 反应易生成空洞和脆性相,引起机械可靠性降低等.这些瓶颈导致软钎焊工艺无法满足未来先进 封装互连技术的发展要求.近年来,Cu-Cu键合 新方法发展迅速,无Sn元素的使用避免了上述问 题的出现.具体而言,Cu-Cu键合具有以下优势:①Cu在键合过程中全程保持固态,无软钎焊的外 溢问题,可实现窄节距互连;② 具有优异的导电、 导热性能,良好的抗电迁移能力和热机械可靠性;③Cu是半导体制造中的常用金属,工艺兼容性好 且材料成本低廉.综合上述因素,Cu-Cu键合技术 可满足高密度、高可靠互连,未来最有可能获得大 规模应用.然而,Cu-Cu键合也面临诸多新的挑战, 如铜的熔点(1 083 ℃)高、自扩散速率低,难以实现 低温键合.已有研究表明,Cu-Cu直接键合需要在400 ℃的高温下才能充分发生原子扩散,如此 高的温度会导致降低对中精度、损伤器件性能、增 加设备要求等问题.因此,如何实现Cu-Cu低温 键合已成为学术界和产业界共同关注的焦点之一.

  目前,实现Cu-Cu低温键合的技术手段可分为 热压键合工艺、混合键合工艺、纳米材料烧结工艺 三大类.除了需满足上述低温需求外,新工艺还要 综合考虑性能(如强度、电阻)、可靠性、效率、成 本、工艺兼容性等因素.文中将对这些工艺的方 法、原理进行系统归纳、总结,分析其实际应用时存 在的工艺难点,并展望了Cu-Cu低温键合进一步研 究的方向,以期对未来技术发展提供参考.

  热压键合工艺的基本原理与传统扩散焊工艺 相同,即上下芯片的Cu凸点对中后直接接触,其实 现原子扩散键合的主要影响参数是温度、压力、时 间.由于电镀后的Cu凸点表面粗糙并存在一定的 高度差,所以键合前需要对其表面进行平坦化处 理,如化学机械抛光(chemical mechanical polishing, CMP),使得键合时Cu表面能够充分接触.基于目 前研究文献,通过热压键合工艺实现Cu-Cu低温键 合的方法从机理上可分为两类,即提高Cu原子扩 散速率和防止/减少待键合Cu表面的氧化.

  Juang,Shie,Ong,Liu等人提出了 电镀晶粒呈现高度(111)取向的Cu凸点用于CuCu热压键合的方法,如图1所示.已有研究表明, 在150 ~ 300 ℃条件下,Cu原子在(111)晶面上的 扩散速率比(100)、(110)晶面高3 ~ 6个数量级,晶 粒呈现高度(111)晶向的Cu凸点可以有效提高Cu原子扩散速率,降低键合温度.利用晶粒定向 生长的方法可以在300 ℃,90 MPa,10 s的条件下 完成快速键合,但是键合强度和导电性能较差.为 此研究人员进一步开发出了两步键合工艺:首 先,电镀后的Cu凸点进行CMP并使用柠檬酸清洗 去除表面氧化物,并在300 ℃,93 MPa,10 s的条件 下进行预键合;然后,在300 ℃,47 MPa的线 h进行退火处理,退火后的剪切强度达103 MPa,导电性能进一步改善.图1d显示了退火 后晶粒会长大至贯穿键合界面,从而可提高界面的结合强度.

  此外,Sakai等人采用金刚石刀头飞行切割 的方法对Cu表面进行整平,如图2所示.发现切 割后的Cu表面会出现由细晶粒构成的薄层,细晶 层可提高晶界扩散通量,因而降低Cu-Cu键合的温度.最终键合在200 ℃,30 min,300 MPa的条件下 完成,且界面处原子相互扩散形成了新的晶粒.研 究人员还比较了飞行切割与CMP处理后的CuCu键合强度,结果表明,200 ℃连接条件下,前者 的强度比后者高出近一倍.此外,Al Farisi等人将该方法用于密封,飞行切割后的Cu密封条可在250 ℃的低温下实现键合,从而减少密封过程中的 气体解吸附,降低腔体内的气压.从图3可以看到, 飞行切割后的Cu表面晶粒发生了明显细化.

  进一步地,为降低对CMP/飞行切割整平工艺 的依赖,Yang,Chou等人提出了插入式CuCu键合工艺,其原理如图4所示.首先通过电镀工 艺制作出异型结构的待键合Cu表面,一面直径较 小的Cu为突出结构,另一面直径较大的Cu为凹陷 结构,二者对中后形成插入式结构.在加压过程中突出结构的Cu和凹陷结构的Cu发生相对滑移和 应力集中,产生一定的热效应,加速原子扩散.这种 方法可以在150 ℃的条件下完成键合,键合后的界 面如图5所示.可靠性测试表明,该方法经过1 000个 热 循 环 测 试(thermal cycling test,TCT,−55 ~ 125 ℃)和96 h,130 ℃,85%湿度的加速老化测试(highly accelerated stress Test,HAST)后,接头电阻 无明显变化.这种方法无需CMP工艺,对待键合表 面的粗糙度有一定容忍度.但是 ,为了使上下Cu结构发生较大塑性变形而充分接触,需要施加 高达500 MPa以上的压力.

  Cu在高温键合的情况下容易发生氧化,阻碍Cu原子的扩散. Takagi,Suga,Shigetou等人 提出了表面活化键合(Surface Activated Bonding,SAB)的方法.该方法在超高线 torr)采用等离子体轰击待键合Cu表面,去除氧化物和 其他污染物,达到原子级的表面清洁度,并在室温、 无压力条件下进行预键合.室温条件键合可以保证 有更好的对中精度,报道中SAB可实现6 μm的窄 节距互连.由图6可以看到,预键合后仍存在明显 界面,所以该方法往往需要250 ~ 300 ℃的高温退 火. SAB表面处理和键合过程都需要在高真空条件 下完成,对设备要求非常高.

  此外,研究人员提出了使用Ti,Au,Ag,Pd等金属在Cu表面制作钝化层的方法,其键合原理如图7所示. Cu表面的金属钝化层及可有效 防止Cu被氧化,在键合过程中金属钝化层会向Si基底一侧移动,而Cu原子会向键合界面迁移,最 终完成Cu-Cu键合.

  此外,Peng,Tan等人还提出了采用自组 装 分 子 层(self-assembled monolayer,SAM)钝 化Cu表面防止氧化的方法,如图9所示.在键合前, 晶圆放入烷烃硫醇溶液中进行浸泡从而在Cu表面 形成钝化保护.键合过程首先升温至250 ℃,该温 度下有机物钝化层会自行分解,随后将分解产物抽 走后,Cu-Cu键合过程在300 ℃,1 h,2 500 mbar真 空条件下进行.图10为无钝化保护和有自组装分 子层保护的键合界面对比,可以看到无钝化保护的键合界面依然明显,而钝化保护的条件下界面基本消失.

  窄节距互连尤其节距小于10 μm的情况下,Cu-Cu键合后的片间间隙很小,难以填充下填料.混合键合工艺可分别实现Cu和Cu之间的键合以 及Cu周围介质和介质之间的键合,键合后的介质 可起到下填料的作用,减缓热应力的同时保证更高 的键合强度、散热能力和防止Cu凸点被腐蚀.典 型的混合键合包括Cu/SiO2和Cu/粘结剂键合两 种. Cu/SiO2混合键合的关键是得到平整度高、粗糙度小、亲水性的表面,键合前需对SiO2表面进行 激活;Cu/粘结剂混合键合基于热压键合机理,Cu/热固性的粘结剂通过加热加压的方法键合在一起.

  键合后可以得到无缝隙的键合界面, 能有效提高热/机械可靠性.目前,关于CuCu键合的研究很多,如前述晶面定向生长、表面钝 化等,然而其中相当一部分工艺无法直接移植到Cu/SiO2混合键合.这是因为Cu/SiO2混合键合需 要综合考虑Cu-Cu及SiO2-SiO2键合 ,面临工艺 兼容的挑战.目前,实现Cu/SiO2混合键合的方 法包括表面激活、直接键合技术(Direct Bonding Interconnect,DBI)、表面活化键合(SAB)等.

  表面激活是指采用等离子体对晶圆表面进行 处理,清洁晶圆表面并使其活化,研究中采用的等 离子体包括O2,H。